• cellink 800x450

    Cellink produces and sells a hydrogel that is compatible with all extrusion based 3D bioprinters. Basically want to establish themselves as the leading suppliers of consumables as bioprinters become more widely available and their prices drop. 

  • hydrogel 800x450

    In a new research report, detailed in the Journal of Advanced Materials, researchers have discovered a way of creating hydrogels that are “extremely tough and robust”, while also being compatible with the encapsulation of cells within the structure itself.

  •  University of Bristol 3D Print Bio Ink with Stem Cells

    Scientists at the University of Bristol have developed a new kind of stem-cell containing bio-ink, which could eventually allow the production of complex tissues for surgical implants. This new bio-ink contains two different polymers, a natural and a synthetic one. Team has been successful to 3D Print full-size tracheal cartilage ring and expect to print surgical bone or cartilage implants with it.

  •  These 4 Universities have their own 3D Printing Plans

    The Four Universities are working their own way to develop 3D Printing for medical uses and these include Indiana University-layering by applying a viscous bio-ink; Wake Forest University- Integrated Tissue and Organ Printing System (ITOP), which deposits biodegradables to form the tissue's shape, and water-based gels that contain the cells; Pennsylvania State University- artificial cartilage produced by the team is very similar to native cow cartilage and lastly, Advanced Solutions Life Sciences working with capillary beds, which they can flow blood through in the lab.

  • Students pioneer Scaffold Free Bioprinting with Hacked Ultimaker

    Students at Ludwig-Maximilian University of Munich and the Technical University of Munich formed up a team called Team BiotINK and have discovered a way of 3d printing without going through scaffold formation. Using ultimaker 2+ 3d printer and biotink with streptavidin, the 3d printing can now be done without scaffolds and hence reducing the cost of 3d printing.

  • Coronary Microvasculature 300x300 2

    One roadblock to 3D printing complete, functional organs lies in our inability to ensure the engineered tissue will be well nourished with an accessible blood supply.  Presently we have seen attempts at recreating arteries and veins, but successfully ensuring blood flow deep into tissue to the level of the capillary beds has proven elusive. A group of bioengineers and clinicians have pioneered a technique allowing them to print a fibrin patch containing organized endothelial cells, the cellular linining of blood vessels. Not only did the printed patch enhance blood vessel formation, but the engineered vascular tissue actually integrated with the host's own vasculature, improving tissue perfusion of damaged tissues. This research provides a novel technique that may permit printing of larger blocks of tissue and even organs.

  •  Human Earlobe receives Complex Vasculature with Open Source Vitaprint

    The Institute for Development of Advanced Applied Systems (IRNAS), located in Slovenia, operates Symbiolab, an open source-based biolab that focuses on the development of future-proof 3D biofabrication. The company developed Vitaprint, an open source platform which has now been used by IRNAS to fabricate 3D Printed Blood Vessels into a human earlobe using the freeform perfusable vessel and channel systems into bio-compatible hydrogels.

  • New Bioprinting Ink will open the world for Scaffolds

    A group of researchers from Japan’s Osaka University have developed a new bioprinting ink using a method based on hydrogelation mediated by horseradish peroxidase, an enzyme that can create cross-links between phenyl groups of an added polymer in the presence of the oxidant hydrogen peroxide. This bioprinting ink will be better substitute of Sodium Alginate as it will allow 3D Printing of more variety of scaffolds.

  • Researchers Use 3D Printing Cryogenics to Develop Biological Replicas for Tissue Regeneration

    Researchers from Imperial College London (ICL) have developed new 3D Printing Technique to create biological replicas for tissue regeneration. In collaboration with Kings College London, they experimented with 3D Printing and Cryogenics using solid Carbon Dioxide (dry ice) to quickly cool down hydrogel ink and Ultimaker 3D Printer. Once the ink softens, it forms a gel as soft as human tissue, which was then seeded with Dermal Fibroblasts with success.

Contact Info

c3d logo white 300w 

8485 E McDonald Dr #550
Scottsdale, AZ 85250

Phone 480.755.1155

Fax: 480-247-4213