drvarun sqMedical 3D Printing & Bioprinting

Dr Varun Tyagi is a medical doctor who practices in India and writes about remarkable and historical landmarks throughout the medical world.  Dr Varun believes that 3D printing can help democratize medical care, making medical devices affordable and available to everyone on the planet.

Programmed Object’s Firmness Mixed With SLA And 3D Printing For Tissue Bioprinting

Programmed Objects Firmness Mixed With SLA And 3D Printing For Tissue Bioprinting

Researchers from University of Colorado Boulder have developed a 3D printing technique with SLA that allows for localized control of an object’s firmness, which can potentially pave way for tissue 3D printing technique. The layer-by-layer printing method with fine-grain and programmable control over rigidity allows the researchers to mimic the complex geometry of highly structured yet pliable blood vessels. The 3D printer used by the researchers is capable of printing biomaterials as small as 10 microns, or one-tenth the width of a human hair.

Read more ...

Duke University Football Team Star Returns To Field With Aid From 3D Printed Brace

Duke University Football Team Star Returns To Field With Aid From 3D Printed Brace

Duke University Football Team’s star quarterback, Daniel Jones, fractured his clavicle on September 8th, when Clark Bulleit and Kevin Gehsmann, seniors of team started working on Custom-Fit 3D Printed Wrist Brace for Jones, finally creating nine prototypes altogether, using a basic 3D printer before turning to a PolyJet printer for the final product. The 3D Printed Brace prevents damage to the initial fracture point and helped Jones return to the field.

Read more ...

Research Reveals Hurdles For 3D Printed Pharmaceuticals

Research Reveals Hurdles For 3D Printed Pharmaceuticals

A Research paper was recently published by Preethy Ani Jose, with the Oxford College of Pharmacy, and Peter Christopher GV, from pharmaceutical company Strides Shasun Limited in Bangalore, concerning the challenges faced by Pharmaceuticals when being introduced with 3D Printing. The paper presents regulatory agencies expectations, limitations, problems in establishing such setups for production of drug products, etc. The research paper also discusses how 3D Printing faces challeneges such as proper testing of Design and Manufacturing Process Considerations, validating the 3D printing process and software to determine the level of accuracy, and documentation in order to confirm that any products conform to existing guidelines.

Read more ...

Surgery For Scoliosis Gets Even Better

Surgery For Scoliosis Gets Even Better

The PAMIS project aims at improving scoliosis surgery through the development of 3D Printing Technology. Using 3D scans of the patient’s spine, patient specific implants can be 3D printed, using lightweight, biocompatible materials and used for Scoliosis surgery. CITD, a Spanish engineering company, has taken over PAMIS Project with plans to further revolutionize the technology with their expertise in additive manufacturing for healthcare.

Read more ...

3D Printed Orthotics Gets Streamlined Digital Workflow By CYBER Team Through FDM and Topology Optimization

3D Printed Orthotics Gets Streamlined Digital Workflow By CYBER Team Through FDM and Topology Optimization

The CYBER Team, or Cyber-Physical Design and Additive Manufacturing of Custom Orthoses, is funded by America Makes, the national accelerator for 3D printing and additive manufacturing based in Youngstown, Ohio, and was formed in 2016 by Stratasys, the University of Michigan, and Altair Engineering, aiming at Orthotic needs for Veterans. The CYBER Team is working on project, with a total budget of $2 million to combine cloud-based designs and Stratasys’ FDM technology to reduce orthotic outpatient visits from three to one by developing 3D printing-specific functionality, built on optimization software package Altair OptiStruct and OptiStruct for digitalization.

Read more ...

3D Printing Paves Way For 72 Year Old Life

3D Printing Paves Way For 72 Year Old Life

A 72-year-old woman with sciatica and complex L5–S1 pseudoarthrosis 12 months after L2–S1 fixation surgery for symptomatic degenerative scoliosis required surgery to fix the complications, for which a surgical team approached her with 3D Printing. CT data from patient scans was used to develop models of the bony lumbosacral spine for pre-operative planning along with a patient-specific 3D printed titanium lumbrosacral fixation implant. 3D printing was also used to create a stereotactic drill guide. The sixth-month follow up showed promising results as explained by the team of Australian researchers.

Read more ...

Student Develops Wound Repair Scaffold Under A Thesis

Student Develops Wound Repair Scaffold Under A Thesis

Politecnico di Torino student, Viola Sgarminato in his thesis, used a combination of electrospinning and 3D printing with an EnvisionTEC 3D-Bioplotter to develop scaffolds that would promote healing by electrically stimulating skin cells. These wound repairing and dressing scaffolds were then seeded with cells, which were then evaluated 24 and 72 hours later. The composite wound dressings were also examined using a scanning electron microscope to verify the adhesion of the fibers to the scaffold, and good results were shown: even if subjected to mechanical stretching, the fibers remained attached to the substrate.

Read more ...

Students Design Wearable Health Monitoring Device Powered By Body Heat

Students Design Wearable Health Monitoring Device Powered By Body Heat

A group of students from Santa Clara University have developed a partially 3D printed wristband prototype that uses body heat, ambient air and heat sinks to create a temperature difference across thermoelectric modules, which generates extremely low voltage electrical power required to run the device itself. The device consists of four subsystems: power generation, voltage boost, battery charging and wearability and the device was 3D Printed using Formalabs Form 2 3D printer.

Read more ...

BioArchitect Continues To Harvest 3D Printing Technology

BioArchitect Continues To Harvest 3D Printing Technology

Local company BioArchitects was founded by young entrepreneur, Felipe Marques four years ago with investment in medical 3D Printing to harvest the technology. The company now uses metal 3D printing technology to create patient-specific, biocompatible implants that replace hard tissue and allows doctors to actually be able to see and manipulate a replica of what they will find when they operate. The BioArchitects also performs in field of medical training, simulated operations and prosthetics, with their titanium plate being first of its kind to be approved for use by the US Food and Drug Administration (FDA).

Read more ...

3D Printed Anatomical Models Closer To Human Cadavers Says Research

3D Printed Anatomical Models Closer To Human Cadavers Says Research

A group of researchers from the Netherlands finished a validation study to test the accuracy of 3D printed anatomical models for surgical planning purposes which included dissecting nine human cadavers to acquire three specimens each of a pelvis, hand, and foot, and inserting Titanium Kirschner (K-) wires in them to mark important anatomical landmarks. Using a Siemens Somatom Definition AS 64-slice CT to scan the specimens, and then using Phillips Intellispace Portal software for 3D reconstructions, the models were 3D Printed using an Ultimaker 3 and a Makerbot Replicator Z18 using PLA material.

Read more ...

3D Printed Surgical Guides Help Enhance Total Knee Replacement Surgeries

3D Printed Surgical Guides Help Enhance Total Knee Replacement Surgeries

Staff at Orthoparc in the Netherlands have developed a method of patient-centered total knee replacement through Surgical Guides that helps make the surgery less invasive, removing the need to drill into the femur canal as in traditional knee replacement surgery procedures and simultaneously increase the comfort of patient. These surgical guides are produced using data gathered about an individual patient’s knee and are fabricated in-house on a 3D printer. When placed upon the patient during surgery, they guide the surgeon to exactly where cuts need to be made in relationship to where the knee is resting.

Read more ...

Anatomics Lead Ways Through Patient-Specific 3D Printed Spinal To Help People In Need

Anatomics Lead Ways Through Patient Specific 3D Printed Spinal To Help People In Need

Paul D’urso, MD, Anatomics Founder and a neurosurgeon at Epworth Healthcare, had reported 700 spinal fusion procedures at the recent 3DHEALS conference in San Francisco. They also developed Atlantoaxial transarticular screw fixation, an effective technique for arthrodesis and discussed how biomodelling and 3D printing are both useful tools for pre-surgical planning, developing titanium implants and patient-specific tools, and intraoperative stereotaxy – a minimally invasive surgical procedure which uses a 3D coordinate system to locate small targets inside the body and then perform an action, like an ablation, biopsy, injection, or implantation.

Read more ...

India Harnesses 3D Printing As Two Children Receive 3D Printed Prosthetic Limbs

India Harnesses 3D Printing As Two Children Receive 3D Printed Prosthetic Limbs

India is progressing towards 3D Printing too and seeks to harvest the benefits of this technology. Recently, two children in Manipal, India received 3D printed prosthetic limbs from the brand new 3D Printing Facility called Hastha Centre for Congenital Hand Differences, at the Department of Orthopedics at Kasturba Hospital. The prosthetics made at the center can be customized to any level of amputation, whether above or below the elbow or for missing or shortened fingers.

Read more ...

CT-Bone Implants By Next 21 Gets Approved In Japan And Europe

CT Bone Implants By Next 21 Gets Approved In Japan And Europe

Next 21 K.K., after receiving a commercialization approval in Japan and Europe, has announced formal approval for a new technology to 3D print synthetic bone grafts, called CT-Bone, which is a 3D printable, calcium phosphate implant that’s actually converted into real bone by the patient’s own body. After a CT-scan, Next21 K.K.’s biomedical team create a patient-specific implant (PSI), which can incorporate porosity and match the patient’s anatomy perfectly, which helps facilitate bony ingrowth and good bone-to-implant contact.

Read more ...

Allevi and Made In Space Join Hands To Develop 3D Printing For Outer Space

Allevi and Made In Space Join Hands To Develop 3D Printing For Outer Space

3D Bioprinting company Allevi, formerly known as BioBots and California-based 3D printing and space technology firm Made In Space, have partnered to develop the Allevi ZeroG – the first 3D bioprinter in space launched at the recent ISS Conference in San Francisco, and also found the first two users of the new 3D bioprinting platform in Astronauts, Mark Vendei Hei and Randy Bresnik. Allevi also developed a compatible extruder, fittingly called the ZeroG bio-extruder, that is able to be outfitted onto Made In Space’s Additive Manufacturing Facility currently on board the ISS.

Read more ...

3D Printed Cardiac Catheter Devices Can Save Lives With Precision

3D Printed Cardiac Catheter Devices Can Save Lives With Precision

Atrial Fibrillation or irregular rapid heartbeats affect many people worldwide with major causing death, and surgeons use cardiac catheter devices to map a heart’s electrical activity, which can also be used to detect rhythm disturbances in a patient’s heartbeats and ultimately identifying which part of heart is affected. The one size of these cardiac catheter devices makes it hard to catch these irregular heartbeats due to missed signals and spotty connections. A team of researchers from Stanford University has developed customized 3D Printed Cardiac Catheter Devices that fit each individual’s heart by recording an image file of the heart during an MRI or CT scan.

Read more ...

OPM Gets Accredited To Serve In 14 Countries Of Asia

OPM Gets Accredited To Serve In 14 Countries Of Asia

Oxford Performance Materials Inc., a Connecticut-based company known for its 3D Printed Implants close to bones with osteoconductive properties and PEKK, has recently been accredited as a foreign medical device manufacturer by the Japanese Ministry of Health, Labour, and Welfare. Now able to serve over 14 countries of Asia in a partnership with JSR Corp. of Tokyo, OPM looks forward to expanding the reach of 3D Printing to far horizons.

Read more ...

Bone Defects To Be Restored Through 3D Printed Ceramic Implants

Bone Defects To Be Restored Through 3D Printed Ceramic Implants

Researchers at New York University developing 3D Printed Ceramic Implants that dissolve slowly within the body, stimulating bone to grow in their place, thereby helping in restoring the bone defects that cannot be filled with allograft or autografts. The ceramic implant contains beta tricalcium phosphate, similar to components in natural bone, making the implants resorbable over time and are coated with dipyridamole, a blood thinning agent that stimulates bone growth and attracts bone cells to the implant.

Read more ...

Supporting Nerve Cells Through 3D Printing Can Be The Key To Nerve Damage

Supporting Nerve Cells Through 3D Printing Can Be The Key To Nerve Damage

Liqun Ning, a post-doctoral fellow in the Tissue Engineering Research Group at the University of Saskatchewan, is working on 3D Printing Scaffolds of Schwann Cells, the supporting cells in the nervous system that can force nerve cells to grow properly, which were created using the Canadian Light Source center at the University of Saskatchewan. The scaffolds are expected to stimulate new, healthy nerve cells to grow. The results of the study show that the 3D printed scaffolds can promote the alignment of the Schwann cells and provide cues to direct the extension of dorsal root ganglion along the printed strands.

Read more ...

Laser Peening Effect On 3D Printed Medical Ti6Al4V Implants Shows Better Wear Resistance

Laser Peening Effect On 3D Printed Medical Ti6Al4V Implants Shows Better Wear Resistance

Ti6Al4V, a biomedical implant, is a titanium alloy with biocompatibility, mechanical properties, and excellent corrosion resistance but poor wear resistance, corrosion and stability. The researchers from Jiangsu University used Laser Peening (LP), a laser surface modification technology, to modify Ti6Al4V and the results concluded that the surface micro-hardness value of the LP-treated Ti6Al4V sample increased by 25.7%, showing that LP was able to strengthen its surface. Additionally, the results of the experiment showed that after being treated with LP, the specimen did have better wear resistance than the untreated one; laser energy and impact time also helped improve the wear resistance of the LP specimen.

Read more ...

Biocompatible Cartilage For Implants Made From Crocodile Cartilage, 3D Printing And Human Stem Cells

Biocompatible Cartilage For Implants Made From Crocodile Cartilage 3D Printing And Human Stem Cells

Dr. Pardraig Strappe, a microbiologist in central Queensland along with a team of researchers at CQUniversity, is using 3D printing, human stem cells, and crocodile cartilage to develop a 3D Printed Joint Cartilage to treat arthritis and joint injuries. The process involves extracting growth factors from crocodile cartilage, removing the proteins that set off a human immune response and adding adult stem cells using CELLINK 3D bioprinter.

Read more ...

The Fin For Veterans Progress Towards Development And Release

The Fin For Veterans Progress Towards Development And Release

3D printed amphibious prosthetic leg called The Fin was developed months back by Northwell Health with help from Long Island design firm Eschen Prosthetic & Orthotic Laboratories and Composites Prototyping Center. The Fin is a carbon fiber 3D printed prosthetic attachment that allows amputee swimmers to move from land into the water, without having to switch up devices in between and it’s also designed to provide them with a more natural sensation as well. The device is expected to roll out soon and will greatly help the veterans swim again and recover part of their lifestyle.

Read more ...

The Next Additive Manufacturing Strategies To Happen In Boston This January

The Next Additive Manufacturing Strategies To Happen In Boston This January

Additive Manufacturing Strategies event will be going live on 29th-31st January, 2018 in Boston, which will revolve around the trends and future of 3D Printing in Medicine and Dentistry. With workshops, startup competitions and exhibitions, SmarTech analysts giving overviews of developments; the event will aim consultants, business development people, leaders in manufacturing and operations people who have a significant role in future of 3D Printing in medical field.

Read more ...

Neural Scaffold Implant That Can Help In Recovery Of Patients With Spinal Cord Injury

Neural Scaffold Implant That Can Help In Recovery Of Patients With Spinal Cord Injury

A team of engineers and medical researchers from the University of Minnesota (UMN) are working on creating Neural Scaffold that can help patients with spinal cord injury alleviate pain and gain control over functions like bladder, bowel, and muscle control again. The prototype contains 3D Printed Silicone Guide acts as a scaffold, over which neuronal stem cells are 3D Printed, which then later differentiate into neurons, and then it is implanted into the injured part of spinal cord.

Read more ...

Researchers Work Toward 3D Printed Magnets For Medical Devices

Researchers Work Toward 3D Printed Magnets For Medical Devices

ETH Zurich researchers are working on using 3D Printing Technology to create Magnets that can be used in Rotary Blood Pumps, which are the only option for patients suffering from end-stage heart failure. The traditionally available pumps tend to have the side effects of hemolysis and thrombus formation, therefore they created a filament made from thermoplastic combined with isotropic NdFeB powder, which was then used to 3D print a prototype of a turbodynamic pump with integrated magnets in the impeller and housing. The pump was 3D printed in one piece on a low-cost, consumer-level 3D printer (a Prusa i3 MK2 with a multi-material upgrade, to be exact), then the magnetic components were fully magnetized in a pulsed Bitter coil, added with MagFil, the 3D Printed Magnets, and whole process took 15 hours.

Read more ...

Surgeons Exploring World Of 3D Printing With Innovative Lab At Duke University

Surgeons Exploring World Of 3D Printing With Innovative Lab At Duke University

Tawfig Khoury, MD, an otolaryngology (ear and throat) resident at Duke University makes 3D printed medical models of the ear’s delicate temporal bones used for the purposes of medical training while Dr.Khoury works on his 3D printed models at the university’s Innovation Co-Lab Studio, previously described as a “creativity incubator,” also includes 3D scanning equipment, CNC machines and laser cutters, digital modeling workstations, and a number of other electronics. In order to receive and handle requests for 3D prints from around the world, the studio uses 3DPrinterOS, which gives users access to an online, live-streaming video of the project while it’s being 3D printed.

Read more ...

Personalized 3D Printed Paracetamol Has Greater Advantages

Personalized 3D Printed Paracetamol Has Greater Advantages

Researchers from FabRx are working on using 3D Printing to create personalized medicine for patients that could reduce the adverse effects to individuals. Though FDM 3D Printing has potential, the high extrusion temperature limits the potential active ingredients to only heat-stable ones, it was still chosen over SLA 3D Printing since it was unsafe. A regenHU 3D bioprinter was used to print paracetamol into three different tablet geometries – solid, ring and mesh and the results could be invariably beneficial if successful for the individual personalization of medicines.

Read more ...

Researchers Discuss What 3D Printing Is Yet To Do In Medical Field

Researchers Discuss What 3D Printing Is Yet To Do In Medical Field

A team of researchers based at the University of Utah worked on unmet clinical needs of 3D Printing and explained the needs in terms of structural support for skeletal and tubular organs, novel drug delivery strategies, organ-on-a-chip platform and finally, multimaterial 3D printing, which can help speed up the creation of bioelectronic constructs to impart active functionalities to an otherwise passive construct. Through the research, they addressed how 3D Printing Potential can be explored furthermore to increase compliance and comfort in terms of human satisfaction.

Read more ...

Placenta Through 3D Printing Gives Way To Learning Inheritance

Placenta Through 3D Printing Gives Way To Learning Inheritance

Researchers at TU Wien (Vienna) have 3D printed a placenta on a chip to specifically study the permeability of the placenta and gain a better understanding of how it works. They developed a special femtosecond laser-based 3D printing process to produce customized hydrogel membranes directly within microfluidic chips, which are then populated with placenta cells. The researchers can use the chip to closely monitor biological parameters such as the pressure, temperature, geometry and nutrient supply of the mini-placenta and also test different drugs on the 3D printed tissue, observing the progression of diseases and the rate of cure.

Read more ...

Bonds Over The Bones: Student Joins Teacher To Fight Off Gap Of Bone Cancer

Bonds Over The Bones Student Joins Teacher To Fight Off Gap Of Bone Cancer

Linh Nam, a Harvard College Student was diagnosed with Osteosarcoma, a cancerous tumor in the bone when she was just ten years old and had a section of bone removed from her leg with a gap left and upcoming 10 surgeries over a decade. However, she joined with Hala Zreiqat, biomedical engineering professor, to work on a project that aims to create a biocompatible, artificial material with the same strength and porosity as real bone using 3D printing. Professor Zreigat’s team finally found a way to generate a porous core of a novel multi-component ceramic for bone implants using 3D printing which will be available to public around 2019.

Read more ...

7-Year-Old Receives Surgery Planned Ahead Through 3D Printed Surgical Model

7 Year Old Receives Surgery Planned Ahead Through 3D Printed Surgical Model

7-year-old Isaiah Onassis Goberdhan, son of Barnaby Goberdhan had an aggressive tumor in his palate and nasal cavity and required surgery to remove it and approached Dr. Neha A. Patel, MD, Nortwell Pediatric Otolaryngologist at Cohen Children’s Medical Center. Working with Todd Goldstein, PhD, a Northwell Health Researcher, Dr. Patel create a personalized 3D rendering of Isaiah’s palate, using his CT and MRI scans and Formlabs technology was used to 3D print an anatomical model with the tumor, and one with it removed, in order to help the doctors and the family physically visualize the entire procedure ahead of time.

Read more ...

Had Heart Attack? The New 3D Printed Cardiac Patch Heals The Permanent Damage

Had Heart Attack The New 3D Printed Cardiac Patch Heal The Permanent Damage

Once a person suffers myocardial infarction or heart attack in local language, some part of heart is destroyed permanently at cellular level which cannot recover or regenerate. However, scientists have developed 3D printed cardiac patches that can be used to repair hearts damaged by heart attacks, but only about five have been produced worldwide. A group of researchers 3D printed a world-first stretchable microfiber scaffold with a hexagonal design to which added specialized stem cells called iPS-Cardiomyocytes, which began to contract unstimulated on the scaffold. The work has been demonstrated on the actual hearts of pigs and being planned for human trials.

Read more ...

Researchers Study Malaria Through Inexpensive 3D Printed Membrane Feeder

Researchers Study Malaria Through Inexpensive 3D Printed Membrane Feeder

A group of researchers from Imperial College, London is studying how malaria is transmitted, which requires mosquito test subjects to be infected with Plasmodium gametocytes – the blood stage parasites that actually cause malaria. In a Standard Membrane Feeding Assay (SMFA) test, an artificial membrane feeding apparatus, which simulates the host’s skin and body temperature, is used to get the mosquitoes to eat reconstituted blood containing the gametocytes. The researchers created the two-part membrane feeder design using the free, open source CAD modeling program Art of Illusion, then had Shapeways 3D print the parts out USP VI medical-grade “Fine Detail Plastic” acrylic resin (VisiJet M3 Crystal).

Read more ...

Tokyo Researchers Reduce Production Costs For 3D Printed Medical Models

Tokyo Researchers Reduce Production Costs For 3D Printed Medical Models

A group of researchers from Tokyo Dental College set up a “One-stop 3D printing lab” at the college for the purposes of quickly and inexpensively designing and 3D printing models for oral and maxillofacial surgery. The researchers created their One-Stop 3D printing Lab by generalizing the software and hardware around its inexpensive Value3D MagiX MF-2000 desktop 3D printer from MUTOH Industries Ltd. The researchers determined, by 3D printing dental models daily, that the amount of preparation cost and modeling material can be lowered by increasing the laminating pitch.

Read more ...

Youbionic Releases Redesigned Version Of Youbionic Arm

YouBionic Releases Redesigned Version Of Youbionic Arm

Italian Startup Youbionic was founded by Federico Ciccarese, and they have come up with a newer version of their Youbionic arm that is a Robotic Arm made of 3d printing and designed to perform all movements that a human Arm can accomplish. The arm is 3D printed out of PLA and uses Actuonix Linear Actuators. The company has rolled out the 3D Print Files of the arm for $149 and files for hand for $99 with hopes to fund his team’s further development.

Read more ...

Treatment Of Cleft Lip And Palate Of Newborn Receives Aid From 3D Printing

Treatment Of Cleft Lip And Palate Of Newborn Receives Aid From 3D Printing

A study conducted at Technical University of Munich (TUM) described their virtual workflow, and also analyzed how effective semi-automated intraoral molding plate generation, or RapidNAM, is for helping to treat Cleft Lip and Palate (CLP). A 3D triangulation scanner from 3Shape in Denmark was used to digitalize the casts, and after creating a graphical user interface (GUI), an algorithm automatically detected the alveolar ridge, in order to find the monthly growth rate in the anatomical study of 32 healthy newborn babies. Special 3D software was used to help with plate expansions during the manual plate molding.

Read more ...

Calcium Silicate Bone Scaffold By 3D Printing Shows Promise For Bone Grafts

Calcium Silicate Bone Scaffold By 3D Printing Shows Promise For Bone Grafts

A collaborative team of researchers from the National Taiwan University Hospital, the China Medical University Hospital, and Asia University have created a new bone substitute- Calcium Silicate Bone Scaffold that have both osteoconductive and osetoinductive potential to be used for bone grafts/repair required in people suffering from bone defects and disorders around the globe. The team explored the effects of various loading methods on novel grafting material bone morphogenetic protein-2 (BMP-2), which was loaded with a mesoporous calcium silicate (MesoCS) scaffold created with FDM 3D printing on a 3D bioprinter from GeSiM.

Read more ...

Neuraxial Anesthesia Training Phantom Gets 3D Printed For Just 13$

Neuraxial Anesthesia Training Phantom Gets 3D Printed For Just 13

A group of researchers developed an inexpensive, 3D Printable Neuraxial Anesthesia Phantom through the use of free/libre/open-source (FLOS) software and data from CT scans to create a 3D model of the lumbar spine, which was then modified, put inside a digitally designed housing unit, and 3D printed out of PLA on a desktop system. The so 3d Printed Neuraxial Anesthesia Training Model cost only $13 and 25 hours of non-supervised 3D printing and two hours to assemble it, much less than creating a Simulab phantom.

Read more ...

Russia Advances One Step Closer To Bioprinting Through Biocompatible 3D Polymeric Materials for Tissue Repair

Russia Advances One Step Closer To Bioprinting Through Biocompatible 3D Polymeric Materials for Tissue Repair

A team from the Polymer Materials for Tissue Engineering and Transplantology Laboratory of Peter the Great St. Petersburg Polytechnic University (SPbPU) in a joint project with researchers from the Russian Academy of Sciences and Pavlov First St. Petersburg State Medical University, has developed innovative, polymeric medical materials that can be used to fix human organs that have undergone trauma. The team have created a porous, 3D material made of chitosan – a bone tissue analog – and collagen which can mimic the body tissues and prevent itself from being rejected by the immunity of human body.

Read more ...

Study Proves 3D Printed Splints Preferable Over Conventional Splints

Study Proves 3D Printed Splints Preferable Over Conventional Splints

A group of researchers compared conventional and digital additive manufacturing of hard occlusal stabilization splints (SS) using technical and clinical parameters and 14 subjects underwent sequence of tests and questionnaires for 12 weeks. On a scaled of great discomfort,  Conventional had a score of 42 while Additive Manufacturing performed 15, meaning 3D Printed Stabilization Splints are far more comfortable and preferred over the conventional ones.

Read more ...