• Digital CAD-CAM Technology Reduces Dental Chairside Time

    57db1d6ac5f95.image

    During the CAD-CAM crown procedure, instead of taking physical impressions, a dentist uses optical or laser scanning technology to capture a digital image of the tooth from all angles. The dental practitioner uses special 3D software to design the crown and sends it to a mill located in the office. The dentist then places a block of porcelain in the mill to form the tooth. Drills in the mill carve and shape the tooth, following the pattern of the mold sent via scan.

  • Surgeons Exploring World Of 3D Printing With Innovative Lab At Duke University

    Surgeons Exploring World Of 3D Printing With Innovative Lab At Duke University

    Tawfig Khoury, MD, an otolaryngology (ear and throat) resident at Duke University makes 3D printed medical models of the ear’s delicate temporal bones used for the purposes of medical training while Dr.Khoury works on his 3D printed models at the university’s Innovation Co-Lab Studio, previously described as a “creativity incubator,” also includes 3D scanning equipment, CNC machines and laser cutters, digital modeling workstations, and a number of other electronics. In order to receive and handle requests for 3D prints from around the world, the studio uses 3DPrinterOS, which gives users access to an online, live-streaming video of the project while it’s being 3D printed.

  • Laser Peening A Viable Way To Make 3D Printed Ti6Al4V Implants Make Wear Resistant

    Laser Peening A Viable Way To Make 3D Printed Ti6Al4V Implants Make Wear Resistant

    A group of researchers from Jiangsu University tested Laser Peening (LP), a laser surface modification technology, to increase the wear resistance of most common titanium alloy for implants, the Ti6Al4V alloy. Cut samples of alloy of 40 x 20 x 4 mm rectangular shapes, with 4 mm thickness were treated with Laser Peening and then tested for surface roughness and micro-hardness at Nanjing University of Aerospace and Astronautics in China. The promising results concluded 25.7% increased wear resistance in LP-Treated Ti6Al4V samples compared too untreated ones.

    Source: https://www.sciencedirect.com/science/article/pii/S0030399217319230

Contact Info

c3d logo white 300w 

8485 E McDonald Dr #550
Scottsdale, AZ 85250

Phone 480.755.1155

Fax: 480-247-4213